25 Eylül 2009 Cuma

Başlıca Arkeolojik Tarihleme Metodları

1 – Karbon 14 Metodu:

İkinci Dünya Savaşı’nı takip eden yıllarda (1949) Amerikalı kimyacı Willard Libby kendisine Nobel ödülü kazandıran bir buluş yaptı. Bu, tarih öncesi zamanla ilgili çalışmalarda dönüm noktası teşkil eden, fakat esas olarak Dünya’nın yaşı konusundaki bilgileri alt üst eden bir gelişmeydi. Libby’nin keşfi, bugün “Karbon 14” (veya radyokarbon) tekniği olarak ünlenmiş olan, organik kalıntıların yaşını belirleme metoduydu. Arkeologlar 1950’lerde bu yeni metodu kullanarak ilk tarih öncesi yerleşimlere mutlak yaşlar verdiler. Rusya ve Afrika’daki Neolitik yerlerin yaşı 50 bin yıl civarında belirlenirken, Filistin’deki Eriha şehrinin 11 bin yıl önce kurulmuş ilk insan yerleşimi olduğu ortaya kondu. Halen arkeologlar, paleontologlar ve paleoantrepologlar 50 bin yıldan daha genç olan organik malzemelerin (kemik, diş, odun kömürü vs.) yaşını belirlemek için karbon 14 tekniğine başvuruyorlar. Peki ama karbon 14 ile yapılan yaş tayinleri ne kadar güvenilirdir? Bu ve diğer yaş tayin metotları bize geçmişle ilgili ne ölçüde sağlıklı bilgi vermektedir?

Prensip basittir. Uzaydan gelen kozmik tanecikler yukarı atmosferde bulunan karbondioksit (CO2) gazı moleküllerinden bazılarıyla karşılaşırlar ve bunlardaki yaygın, olağan ve kararlı (radyoaktif olmayan) karbon 12 atomlarını sürekli olarak bombardıman ederler. Karbon 12 atomu yapısına iki nötron alarak radyoaktif özellikteki karbon 14 haline gelir. Bu sonuncusu hemen bozulmaya (desintegration) başlar ve belli bir süre sonra azot 14 gazına dönüşür. Bu arada karbon 14 ve karbon 12 önce CO2 yoluyla bitkiler (fotosentez), ardından da hayvanlar tarafından asimile edilir ve beslenme zincirine girer. Herhangi bir bitki veya hayvan için, karbon 14 atomunun dünya üstünde tabii olarak bulunan yaygın ve olağan karbondan (karbon 12) farkı yoktur; canlı her iki atomu da sürekli olarak bünyesine alır ve bunların birbirine nispeti bellidir. Bitki ve hayvan öldüğünde dışarıdan karbon alışı durur. O anda organizmada ölünceye kadar almış olduğu karbon 12 ve radyoaktif karbon 14 bulunmaktadır. Organizmadaki karbon 12 miktarı sabit kalırken, radyoaktif karbon 14 bozulmaya devam ettiğinden karbon 12’ye göre oranı azalır. Yaş tayini için alınan örnekteki karbon 14 miktarını belirlemek için, bir gram karbonda dakikada bozulma sayısını hesaplamak gerekir. Karbon 14’ün yarı ömrü 5700 yıl olarak kabul edildiğinden (yani karbon 14 atomlarının yarısının bozulması için 5700 yıl geçmesi gerektiğinden) analiz edilen organizmanın ölüm tarihi buradan bulunur. Radyokarbon nispeten nadir bulunur; bir bitki veya hayvanın yapısındaki toplam karbon miktarının sadece küçük bir kesri radyokarbondur. Yaş tayini için kullanışlı olan bu küçücük kesrin önemi Libby’nin iddiasına göre şuydu: radyokarbonun olağan karbona oranı dünyadaki bütün canlılar için daima aynıydı ve bu kolayca ölçülebilen bir şeydi. Radyokarbon oluşur oluşmaz bozulmaya başlar. Atmosferde bir miktar radyokarbon oluştuğunda, bu miktarın yarısı 5700 yıl kadar sonra bozulmuş olur (ve azot gazına dönüşür). Geri kalan miktarın yarısı da daha sonraki 5700 yılda bozulur ve ölçülemeyecek kadar küçük bir kalıntı kalıncaya kadar bu böyle devam eder. Bir ağaç, ölümünden 5700 yıl sonra, canlıyken bünyesinde bulunan radyokarbon/ olağan karbon oranının sadece yarısını ihtiva eder. 11400 yıl (veya iki yarı ömür) sonra, tabiattaki oranın sadece dörtte birini içerir. Yaklaşık beş yarı ömür, veya kabaca 30 bin yıl sonra ise, çok zor ölçülen bir kalıntı kalır, bu yüzden radyokarbon testi sadece 30 bin yıldan daha genç kalıntıların yaş tayininde sağlıklı bir şekilde kullanılabilir. Radyokarbon testi, bir zamanlar canlı olan varlıkların kalıntıları üzerinde üstünde çalışır; mesela binlerce yıl öncesine ait bir mezardaki kemikler veya ağaçtan yapılmış direkler gibi. Böyle organik bir maddenin yaşını tayin etmek için kalan radyokarbon miktarını saymak, buradan da canlının ne zaman radyokardon almayı durdurduğunu -yani ne zaman öldüğü- sonucunu çıkarmak gerekmektedir.

Testin değeri, bir papirüs parçasının veya seyrek karşılaşılan bir kafatasının ne kadar zaman öncesine ait olduğunu öğrenmek gerektiğinde ortaya çıkmaktadır. Netice itibariyle bu teknik yeryüzünde radyokarbonun (karbon 14) yaygın, olağan ve kararlı karbona (karbon 12) oranını, ve daha da önemlisi bu oranın zaman içinde sabit kalıp kalmadığını doğrulukla bilmeye dayanmaktadır. Yani testin sağlıklı işlemesi için yeryüzündeki radyokarbon/olağan karbon oranı, teste konu olan varlık hem hayatta iken, hem de öldükten sonra aynı kalmış olmalıdır, ve metodun ilk geliştirildiği günden beri de aynı kabul edilmiştir (son gelişmeler ışığında böyle bir ön kabulün doğru olmadığı anlaşılmıştır). Arkeologlar mezarını buldukları bir insanın yaşını belirlemek istediklerinde, eğer bu insan hayattayken yeryüzünde daha fazla karbon 14 mevcut idiyse, kemiklerden elde edilen yaş hatalı olacak, o insan gerçek yaşından daha genç gözükecektir. Eğer yaşarken yeryüzünde daha az radyokarbon mevcut idiyse bu durumda daha yaşlı gözükecektir.

Libby ve ekibi 1940’larda bu tekniği geliştirirken, Dünya’daki karbon 14 miktarının insanın yeryüzündeki varoluş zamanı boyunca değişmediğine inanıyorlardı; çünkü bu varoluş zamanı, Dünya’nın 4,6 milyar yıl olarak kabul edilen yaşı yanında çok küçük kalıyordu. Libby de radyokarbon oranını “denge değeri” ifadesiyle sabit kabul ediyordu. Dünya oluştuktan ve bir atmosfere sahip olduktan sonra, karbon 14’ün inşa edileceği 30 bin yıllık bir geçiş periyodu olacaktı. Bu periyodun sonunda, kozmik radyasyon etkisiyle meydana gelen karbon 14 miktarı sıfıra doğru bozulan karbon 14 miktarıyla dengelenecekti. Libby’nin terminolojisiyle, 30 bin yıl sonunda yeryüzündeki radyokarbon rezervuarı sabit duruma ulaşmış olacaktı.

Üniformitaryen jeolojiye (jeolojik zamanlar boyunca tabiattaki şartların değişmediğini kabul eden görüşe) göre, Dünya, rezervuarın dolması için gereken 30 bin yıldan binlerce defa daha yaşlı olduğundan, radyokarbon miktarı milyarlarca yıl önce dengeyi yakalamış ve insanın yaratıldığı günden bugüne kadar da bu sabit değerini korumuş olmalıdır. Teorinin bir kısmını test etmek için Libby, radyokarbonun hem oluşma hem de bozulma oranlarıyla ilgili ölçümler yaptı ve önemli bir çelişki belirleri. Buna göre, radyokarbon atmosferde bozulup ortadan kalkma hızına göre % 25 daha hızlı oluşuyordu. Libby, bu sonucu deney hatası olarak kabul etti.

Libby’nin deneyleri 1960’larda, daha gelişmiş tekniklerle çalışan kimyacılar tarafından da tekrarlandı. Söz konusu radyasyon miktarı çok küçük olduğundan (saniyede birkaç atomun bozulması) ve sonuçları bozabilecek diğer bütün radyasyon kaynaklarını seçip elemek gerektiğinden, deneyler çok hassas ölçümleri gerektiriyordu. Yeni deneyler, Libby’nin tespit ettiği çelişkinin sadece deney hatası olmadığını gösterdi; bu mevcuttu. Büyük hatalara rağmen, bugünkü tabii oluşum oranının tabii bozulma oranını % 25 kadar aştığını gösteren güçlü belirtiler olduğu, karbon 14’ün oluşma ve bozulmasındaki dengenin korunmadığı belirlendi.

Bunu, Southern California Üniversitesi’nden Hans Suess; Journal of Geophysical Research’de ve VR Switzer Science’da yazarak diğer bazı araştırmacılarla birlikte teyid ettiler. Verileri gözden geçiren Utah Üniversitesi’nden metalürji profesörü Melvin Cook, karbon 14’ün bugünkü oluşum oranının bir dakikada bir gramda 18,4 atom, bozulma oranının ise bir dakikada bir gramda 13,3 atom olduğu sonucuna ulaştı; yani aynı zaman aralığında oluşma oranı bozulmadan % 38 kadar fazlaydı. Bu keşif Cook tarafından şu şekilde izah edildi: “Bu sonucun iki anlamı olabilir: ya, karbon 14’le ilgili olarak atmosfer şu veya bu sebepten dolayı geçici inşa aşamasındadır… veya radyokarbon yaş tayin metodunun temel kabullerinden herhangi birinde bir yanlışlık vardır.” Cook, radyokarbon oluşması ve bozulmasıyla ilgili eldeki en son rakamları aldı ve buradan sıfır radyokarbona ulaşadak şekilde geriye doğru hesaplamalar yaptı. Aslında bunu yaparken, radyokarbon tekniğini kullanarak Dünya atmosferinin yaşını hesaplamaya çalışıyordu. Sonuçta, Dünya atmosferinin yaşı 10000 yıl civarında çıktı. Üniformitaryen jeoloji ve Darwinci teori diyetiyle beslenip yetiştirilmiş birisi için, veya standart bir jeoloji ders kitabını açan lise veya üniversite öğrencisi için, hayatın dünya üzerinde 10000 yıl gibi kısa bir geçmişi olabileceği fikri, kaçınılmaz olarak mantıksız gözükür. Acaba radyokarbon metodu yaşı bilinen nesneler için test edilip doğruluğu tamamen gösterildi mi? Acaba bu teknik, mükemmel sonuçlarla arkeolojide geniş bir kabul gördü mü? Acaba kullanılan metotta yıllar önce herhangi bir kusur bulunmuş muydu?

Radyokarbon metodu, yaşını bağımsız olarak, mesela arkeolojik kaynaklardan bildiğimiz nesneler üzerinde denenmişti ve etkileyici başarılar elde etmişti. Test edilen ilk eşyalardan biri, Mısır’da firavun mezarından çıkarılmış olan ve bağımsız olarak 3750 yıl öncesine ait olduğu bilinen ağaç bir kayıktı. Radyokarbon denemesi 3441 ile 3801 yıl arasında bir tarih verdi; bu sadece 51 yıl gibi bir hata demekti. Fakat bu umut verici başlangıçtan hemen sonra, metot için zorluklar başladı ve sonraki denemeler anormal yaşlar verdi.

Anormal yaşlarla ilgili son örneklerden birisi şuydu: 1991’de Güney Afrika’da açık arazide bulunan kaya resimleri Oxford Üniversitesi tarafından analiz edilmiş ve yaklaşık 1200 yıl yaşlı olduğu hesaplanmıştı. Bu önemliydi, çünkü bunlar bölgede bulunan ilk açık arazi resimleriydi. Fakat, bu konuda çıkan haberler Capetown’da oturan bayanın, Joan Ahrens’in dikkatini çekti. Ahrens resimleri tanıdı; bunlar kendisinin resim dersinde yaptığı ve daha sonra bahçesinden çalınan resimlerdi. Bu gibi olayların anlamı şuydu ki, yanlışlıklar, yaş tayin tekniklerini bazı dış metotlarla kontrol etme şansına sahip olduğumuz böyle seyrek durumlarda ortaya çıkarılabilirdi sadece. Böyle dışarıdan araştırma imkanları mevcut değilse, karbon tekniğinin verdiği hükmü kabul etmek zorunda kalıyorduk.

Bu anormal keşiflerle ortaya çıkan durum Introduction to Prehistoric Archaeology adlı eserde şöyle özetleniyor: “Yıllardan beri, muhtemel hataların… nisbeten küçük etkileri olabileceği düşünüldü, fakat radyokarbon yaşlarıyla ilgili yakın zamanda yapılan araştırmalar, karbon 14’ün atmosferdeki tabii konsantrasyonunun hesaplanan yaşları belli dönemlerde önemli ölçüde etkileyecek kadar değişmiş olduğunu gösteriyor. Değişim miktarı teorik olarak tahmin edilemediğinden, karbon 14 ile gerçek takvim arasında korelasyon yapabilecek mutlak kesinlikte paralel bir yaş tayin metodu bulmak artık zorunlu olmuştur.”

2 – Ağaçların Büyüme Halkaları:

Radyokarbon yaş tayinini teyit etmek için başvurulan paralel tayin metodu, California ve Nevada dağlarının yüksek kesimlerinde yetişen ve Yeryüzü’ndeki en yaşlı canlı varlık olan ilginç bir ağaç, Bristlecone Çamı üzerinde testedilmiştir.

Bristlecone Çamı, Arizona Üniversitesi’nden Charles Ferguson tarafından dendrokronoloji (ağaç halkalarıyla yaş tayini) bilimini geliştirmek için kullanılmıştır. Bu yararlı bir ağaçtır, çünkü çok uzun yaşamaktadır ve halkalarındaki ardışıklıkların geçmişteki belli yılları temsil ettiği söylenmektedir. Bu durum, genç bir ağacı daha yaşlı ağaçlarla (ölmüş ağaçlar da dahil) mukayese etme imkanı vermekte ve sonuçta ağaç halkası kronolojisi giderek daha geri tarihlere çekilmektedir. Alınan ağaç örneklerindeki belli diziler incelenerek yapılan yaş tayinleri Ferguson’a günümüzden 8200 yıl öncesine uzanan bir ana kronoloji inşa etme imkanı vermiş ve bu da radyokarbon yaşlarındaki değişimlerin doğruluğunu test etmekte kullanılmıştır. Hans Suess, üzerine ana kronolojinin bine edildiği Bristlecone çam örneklerinin yaşını bir de radyokarbon yöntemiyle tayin ederek bir sapma cetveli hazırlamıştır. Bu cetvel teoride radyokarbon metodunun yanlışlıklarını 10000 yıl öncesine kadar düzeltme imkanı vermektedir. Fakat cetveller için bir kalibrasyon metodu henüz geliştirilmiş değildir. Yani geçmişten bugüne çok iyi bildiğimiz sabit bir kriter bulunmamaktadır.

Radyokarbon tekniğinin mucidi Libby, önemli sapmaların olabileceğini başlangıçta düşünmemişti. “Bu tekniği geliştirdiğimizde” diyordu Libby, “elimizde en küçük bir delil olmamasına rağmen, kozmik ışınların sabit kaldığını varsaydık. Fakat şimdi değişim olduğunu biliyoruz.”

Yakın zamanda tartışmaya yeni bir zorluk daha girmiş bulunuyor. Dendrokronolojinin dayandığı temel prensip -her yıl ağaç halkası oluşur- sorgulanıyor. Encyclopaedia Britannica’da Holosen dönemiyle ilgili olarak dendrekronoloji çalışmalarını yazan RW Fairbridge şunları söylüyor: “Ağaç halkası analizlerinde bazı tuzaklar keşfedildi. Zaman zaman, çok şiddetli geçen bir mevsimde, büyüme halkası oluşmayabilir. Bazı enlemlerde, ağaç halkasının büyümesi nem ile, bazılarında sıcaklıkla doğru orantı göstermektedir. İklim açısından bu iki faktör farklı bölgelerde genellikle ters orantılı bir ilişki içindedir.” Aynı şekilde, eğer büyüme baharda başlar, sonra vakitsiz soğuklardan dolayı durur ve tekrar başlarsa, bir yıl içinde iki halka da gelişebilir ve bu yanıltıcı olur. Sonuçta, iklim değişiklikleri, düzeltme cetvellerinde Bristlecone çam yaşlarıyla ilgili değişiklik yapmayı gerektirmektedir. Burada anahtar soru, karbon 14’ün oluşma ve bozulma oranı arasındaki uyuşmazlığın nasıl açıklanacağıdır.

2001 yılında Bahama adalarındaki bir mağarada 45 bin yıl önce oluşmaya başlamış bir dikit üzerinde analiz yapan Arizona Üniversitesi’nden Warren Beck ve arkadaşları, karbon 14’ün atmosferik konsantrasyonunda 45 bin ile 33 bin yıl öncesi arasında çok büyük değişimler belirlediler ve bunun sebebinin, yeryüzünü anormal derecede yüksek kozmik ışın akınlarıyla radyasyona maruz bırakmış bir süpernova patlaması olabileceğini ileri sürdüler.

Problem şuydu: Eğer karbon 14 konsantrasyonu önemli ölçüde değiştiyse, bu dönemin fosillerinin yaşlarını tayin etmek imkansız hale gelmektedir. Lyon Radyokarbon Yaş Tayini Merkezi müdürü Jacques Evin, “atmosferdeki karbon 14 oranının zaman içinde sabit kalmadığı uzun zamandan beri biliniyor. Dolayısıyla ölçüm yaşları sıklıkla değişiyor” diyor. Üçbin yıl önce gözlenen en büyük karbon 14 değişimi bu metodun ve dolayısıyla ağaç halkaları, mercanların büyüme çizgileri ve göl tortullarının çökelme sınırları gibi kalibrasyon yöntemlerinin kullanılmasını imkansız hale getiriyor.

3- Jeolojik Yaş Tayin Metotları:

Hayatın ve İnsanın Kökeni


Jeolojik ve arkeolojik materyallerin yaşını tayinde kullanılan gerek radyoaktif gerekse diğer metotlar, birtakım kabullere ve tahminlere dayandığı için istenen hassasiyette değildir. Bu bakımdan ortaya konan yaşların gerçek yaşlar olduğu hususunda tereddütler hasıl olmaktadır.

Jeolojide “yaş” genellikle nispi (göreceli) bir mana taşır. Yan yana veya üst üste duran iki kayaç kütlesinden birisi diğerine göre daha yaşlı veya daha gençtir. Bir değişim olmamışsa, alttaki kayaç üsttekine göre daha yaşlıdır. Bunu ilk defa 1669 yılında Nicolas Steno belirtmiştir.

Jeolojik ve arkeolojik materyallerin yaşını tayinde değişik metotlar kullanılır. Bunlar:

a- Jeolojik Yaş Tayini: Bu metotta mukayese esastır. Mesela bir bölgedeki Karbonifer yaşlı arazi bir başka yerdekiyle taş benzerliği, fosil benzerliği ve morfolojik yapı benzerliği gösteriyorsa, bu ikinci bölgedeki arazinin de Karbonifer yaşta olduğuna hükmedilir

b- Paleontolojik Yaş Tayini: Bu metotta bir kayacın yaşı, ihtiva ettiği fosil çeşidine göre yapılır. William Smith 1770 yılında İngiltere’de yaptığı kazılar sırasında, kayaçlarda gözlediği fosillerin tabakalar içerisinde gelişigüzel değil, belirli bir sıralanışa göre yer almış olduklarını, aynı tabaka topluluğunda aynı fosil organizma, farklı tabakalarda ise değişik organizma cinslerinin bulunduğunu tespit etmiş ve “benzer fosil gruplarını taşıyan tabakaların aynı yaşta olması gerektiği” sonucuna varmıştı. Daha sonra yaptığı çalışmalar bu düşüncesini doğrulamıştır.

Jeolojik dönemlerde çok kısa devrelerde yaşayıp ortadan kalkmış olan fosiller vardır. Bunlara “Karakteristik veya Kılavuz Fosiller” ya da “Kat Tayin Edici Fosiller” adı verilir. Kat belirleyici fosiller bir bakıma takvim gibidirler ve içinde bulundukları tortul tabakanın jeolojik yaşını ortaya koymada büyük öneme sahiptirler. Mesela Paleozoik başında birden ortaya çıkan Trilobitler kısa zamanda çok geniş bir sahaya yayılmışlar ve Paleozoik sonunda aniden ortadan yok olmuşlardır. Dolayısıyla Trilobitler’in bulunduğu bir tortul tabakanın yaşı Paleozoik’tir. Aynı şekilde Ammonitler Mesozoik, Nummulitler Tersiyer, memeliler de Kuvaterner yaşını verirler.

Farklı devir ve periyotlarda yaşamış karakteristik fosiller dikkate alınarak, her devrin yaşı ve ihtiva ettiği kat belirleyici fosilleri gösteren “Jeolojik Sütun”lar teşkil edilmiştir. Herhangi bir beldede bulunacak olan karakteristik fosille o beldenin yaşı, bu jeolojik sütundan anlaşılabilir.


Paleontolojik Yaş Tayin Metodu’nun Kritiği


Kayaçların yaşları, ihtiva etikleri indeks fosillere göre tayin edilmektedir. Ancak hangi indeks fosillerinin hangi yaşı gösterdikleri nasıl bilinecektir? Bunun cevabı, “Evrim”dir. Yani evrimin bütün dünyada aynı doğrultuda meydana geldiği ileri sürüldüğüne göre, belli bir çağda yaşayan organizmaların geçirdikleri evrim safhaları, bu çağda depolanan tortulları tanımak için şaşmaz bir kriter olmalıdır. Bu, “evrim” düşüncesinin temel prensiplerinden birisidir.

Morris, kayaları kronolojik sıraya dizmek için kullanılan tek yolun fosiller olduğunu belirtir. Fosilleri bu kronolojideki spesifik yere oturtmak için gerekli kriter, “hayatın basitten kompleksliğe doğru evrimleştiği” düşüncesidir. Canlı varlıkların evrimleşmesi ise, fosil kayıtları üzerine bina edilir. Evrimin olduğuna ait delil, fosillerdir. Fosiller de evrim düşüncesine göre kronolojik sıraya dizilmişlerdir. Böylece mesela fasit bir daire şeklinde güçlü bir muhakeme sistemine dönmüştür.

Dunbar bu konuda şöyle der: “Hayatın daha basit formlardan gittikçe kompleks formlara doğru evrim geçirdiğine dair tek tarihi bilgilere dayanan delili, fosiller sağlamaktadır.”

c- Varv Metodu’ylaYaş Tayini: Sular, taşıdıkları materyalleri çukur yerlerde biriktirirler. Bu çökelme hızından faydalanarak tortul bir serinin yaşı tayin edilir. Özellikle buzulların erimesiyle teşekkül eden sular, göllerde veya çukur bölgelerde birikirler. Erime oranı kış mevsiminde azdır ve bu sular beraberinde ince taneli malzemeleri sürükleyerek ince bir tabakanın teşekkülüne sebep olurlar. Yazın ise erime oranı yükselir ve beraberinde iri taneli materyali taşıyarak kalın tabaka teşkil eder. Böylece bir yılda bir ince bir kalın tabaka oluşur. Ağaç halkaları gibi bu halkaları sayarak yaş tayini yapmak mümkündür. Tabakalı kayaçların varvlardan faydalanarak tayini, ilk defa 1905 yılında İsveçli De Geer tarafından yapılmıştır. “Varv” kelimesi İsveç dilinde “periyodik tekrarlanma” manasına gelmektedir.

Çökelme hızından faydalanarak Mısır’da Nil Nehri’nin 3000 yıldan beri her 400-500 senede 30 cm kalınlıkta bir sediment biriktirdiği ortaya konmuştur. Okyanuslardaki tuz miktarının tespitiyle de jeolojik yaş tayininin yapılabileceği ileri süsülmektedir. Buradaki tuzların, çevredeki kayaçlardan belirli sürelerde taşınacağı dikkate alınmaktadır. Joly, okyanus sularında bulunan sodyum iyonlarının miktarı ile her yıl akarsularla karadan denizlere giren sodyum miktarı arasındaki oranı hesaplayarak, okyanuslardaki Na+ miktarını 15627 * 1012 ton, bir yılda okyanuslara giren Na+ miktarını ise 15727 * 104 ton olarak bulmuştur. Buradan hareketle, okyanusların yaşını 99.4 milyon olarak hesaplamıştır. Bu değerin çok az oluşu ve Na+ oranının da devamlı değiştiği nazara verilerek bu metot tenkit edilmektedir.

Varv Metodu’nun Kritiği


Varv Metodu’nda, yağış rejimi ve toprağın yapısı büyük rol oynamaktadır. mevsim ve yıllar arasında görülebilecek iklim değişiklikleri, aynı su miktarının taşıyabileceği malzemenin tekstür ve strüktürüne tesir edecektir. Sel ve taşkınlar da bu varv teşekkülünde bir dezavantaj olarak gözükmektedir. Çünkü normal suyun taşıdığı materyale göre sel sularıyla aynı süre içerisinde daha fazla miktarda sediment taşınıp biriktirilecektir. Bu da, yaş tayininde belli bir sürede sedimenti esas alan Varv Metodu’nun sonucunu büyük oranda etkileyecektir.

d- Radyoaktif Elementlerle Yaş Tayini
: İlk defa Becquerel tarafından1896 yılında, uranyum tuzlarından görünmeyen bazı ışınların çıktığı tespit edilmiş, Madam Curie 1897 yılında toryumun da ışınlar yaydığını tespit etmiş ve bu olaya “radyoaktivite” adını vermiştir. Radyoaktif elementler etrafa alfa, beta ve gama ışınlarını yayarlar. Bu ışınlar, fotoğraf filmi üzerinde bıraktıkları ışınım etkisiyle, Geiger sayıcısıyla ve sentilometre gibi aletler yardımıyla tanınırlar.

Radyoaktif elementlerle yapılan yaş tayinlerini, radyoaktivitenin dolaylı ve dolaysız etkilerine göre iki gruba ayırmak mümkündür.

d.1- Radyoaktivitenin Dolaysız Etkilerine Dayanan Metotlar


d.1.1- Uranyum Metodu: Uranyum metodu yaş tayin metotlarının bir ailesidir. Bu metotların hepsi esası, “uranyum ile onun kardeş elementi olan toryumun uzun bozunma zincirleri boyunca kurşun ve helyum hasıl etmeleri” esasına dayanır. Bu olay “alfa bozunumu” olarak adlandırılır. Olayda alfa partikülleri, ana atomların çekirdeklerinden sabit bir hızla ayrılırlar. Bunlar helyum gazının pozitif yüklü olanlarıdır.

Radyoaktif elementlerin başında uranyum ve toryum gelir. Uranyumun iki izotopu vardır. Bunlardan birincisi U238’dir ve yarı ömrü 4.5 milyar yıldır. Diğeri U235’in ise yarılanma ömrü 0.7 milyar yıldır.

Toryumun (Th232) yarılanma ömrü ise 14.1 milyar yıldır. Bunlar belirli oranlarda helyum atomu vererek aşağıdaki gibi kurşun izotoplarını hasıl ederler:

U 238-----Pb 206 + 8 He 4
U 235-----Pb 207 + 7 He 4
Th 232-----Pb 208 + 6 He 4

Normal kurşun minerali olan galenitte (PbS) kurşunun üç izotopu bir arada yer alır. Bu elementleri ihtiva eden herhangi bir tabakada kurşunun dördüncü bir izotopu olan Pb204’ü, diğer izotoplarla birlikte bulmak mümkündür. Bundan dolayı ona “yaygın kurşun” denir. Jeolojik zamanlar boyunca diğer izotopların miktarı gittikçe arttığı halde, Pb204’ün miktarı hep aynı kalır. Bu bakımdan Pb204’ün radyometrik yaş bulmada önemi büyüktür. Kurşun ihtiva eden bir mineralde Pb204’ün miktarı genel kurşun miktarından çıkarılınca, geride radyoaktif bozunum ürünü olan Pb izotopları kalır. Bunların miktarının tayiniyle de, içinde bulundukları mineralin yaşı tespit edilebilir.

Radyoaktif elementlerde belirli bir zamanda bozunum yoluyla meydana gelen atom sayısı (n) ile, mineralde bulunan radyoaktif elementin atom sayısı (N) doğru orantılıdır.

Matematik olarak bu kanun:
n= N.e-ʎt formülüyle gösterilir.
n= “t” zaman sonra kalan atom sayısı
N= Zamanın başlangıcında, yani t=0 olduğunda mevcut olan atom sayısı.
I= Radyoaktif bozunum sabitesi (her element için karakteristiktir).

Başlangıçta numunede bulunan radyoaktif elementin ve bugüne kadar radyoaktiviteyle meydana gelmiş elementin miktarı bilinirse, radyoaktivite kanunlarıyla son miktarın teşekkülü için geçen müddet hesaplanabilir.
Bozunum hızı zaman ve radyoaktif izotopların yaşına bağlı değildir. Bu hızı istatistiki olarak tespit etmek mümkündür. Mesela uranyumun 10 milyon atomundan (N) her yıl 4 bin 273 tanesi (n) bozunuma uğrar. Burada n/N oranına “bozunum sabitesi” denir.

Bu değer, radyum için yıl başına:
I= n / N=4273 / 107
I= 0.0004273 eder.
Yarı ömrü ise:
T= 0.693 / l
T= o.693 / 0.0004273=1622 yıldır.

Uranyum Metodu’nun Kritiği:

Uranyum radyoaktif bozunumuna dayanan yaş tayin metotlarının sakıncalı tarafları vardır. Bunları şöyle özetlemek mümkündür:

1- Uranyum mineralleri her zaman açık sistemlerde bulunur. Uranyum ihtiva eden kayaç kapalı bir sistemde olmadığı için, dış etkilere maruzdur. Mesela uranyum yer altı suyu tarafından kolayca çözülebilir. Ara elementlerden olan radon gazı, uranyum sisteminden dışarıya veya içeriye kolayca geçebilir. Radyoaktif yaş tayini konusunda söz sahibi Henry Fauld, bu hususa şöyle dikkat çekmektedir; “Jeolojik zamanda hem uranyum hem de kurşun, tortulu şistlerin içinde yer değiştirmişlerdir. Detaylı analizler, bu elementlerle uygun yaşların elde edilemediğini göstermiştir. Benzer güçlüklerle, uranyum ve radyum ihtiva eden maden damarlarının yaşını tayin etme teşebbüslerinde de karşılaşılır. Aynı noktadan alınan örnekler üzerinde farklı yaşların tespit edildiği ve birçok kimyevi aktivitenin vuku bulduğu bilinmektedir.”

2- Uranyum bozunum hızı değişken olabilir. Radyoaktif bozunmalar atomik yapı tarafından kontrol edildiklerinden, diğer olaylardan kolay kolay etkilenmezler. Fakat atomik yapıları etkileyebilen faktörler, radyoaktif bozunum hızını da etkileyebilirler. Bunun en bariz örneği, kozmik radyasyon ve bunun ürünü olan nötrinolardır. Bir başka örnek de, reaktörlerden çıkan veya farklı yollardan hasıl olan serbest nötronlardır. Eğer bu partiküllerin yerküredeki miktarlarını artıracak herhangi bir şey meydana gelmişse, radyoaktif bozunum hızlarını da artıracaklardır.

3- Oğul ürünler, kayacın ilk teşekkülünde orada yer almış olabilir. Uranyum ve toryum bozunumuyla ortaya çıkan radyojenik oğul ürünlerin, bu mineraller ilk defa teşekkül ettiği zaman orada mevcut olması mümkündür. Günümüzde yerkürenin iç tabakalarından lavların akmasıyla meydana gelen kayaların, bazen hem radyojenik hem de müşterek kurşun ihtiva ettikleri bulunmuştur.

4- Oğul ürünlerin hepsi o kayaca has olmayabilir. Radyoaktif bozunmayla teşekkül eden oğul ürünlerin hepsi o kayaçta kalmayacağı gibi, başka kayaçta teşekkül etmiş oğul ürünler de oraya gelmiş olabilirler.

d.1.2- -Potasyum- Argon Metodu:

Potasyum mineralleri volkanik kayaların büyük çoğunluğunda ve bazı tortul kayaçlarda bulunurlar. Geniş kullanım alanları vardır. Potasyum 40, yan ömrü 1.3 milyar bir hızla, elektron yakalama olayıyla Argon 40’a dönüşür.

d.1.3- -Rubidyum- Stronsiyum Metodu:

Bu metot, Rubidyum 87’nin 47 milyar yıllık yarılanma süresiyle Stronsiyum 87’ye dönüşmesine dayanır. Rubidyumun yarılanma süresi bazı otoriteler tarafından 60 milyar yıl, bazıları tarafından da 120 yıl olarak kabul edilir. Bu metodun uranyum metoduna göre ayarlanması gerekir. Dolayısıyla uranyum yaş tayin metodundan daha güvenilir değildir. Gerek uygulama yönünden gerekse uygulamada karşılaşılan mahzurlar bakımından Potasyum-Argon Metodu ile Rubidyum-Stronsiyum Metodu ve diğer radyoaktif metotlar, Uranyum Metodu’yla benzerlik gösterirler.

d.1.4- Radyokarbon (C14) Metodu

“Radyokarbon”, sabit olmayan karbon-on dört (C14) izotopuna verilen isimdir. Karbon-on iki (C12) ise “tabii karbon” olarak adlandırılır ve radyoaktif değildir. Radyokarbon, atmosferin üst kısmında, kozmik radyasyonla, atmosferdeki azot- on dört (N14)’ün aralarındaki reaksiyonlar sonucu hasıl olur. Karbon-12, altı proton, altı nötron ve altı orbit elektron taşır. Karbon-14 çekirdeğinde ise sekiz nötron bulunur. Bu iki fazla nötron, atomu kararsız hale getirir. Nötronlardan biri beta partikülü vererek yedi protonlu ve yedi nötronlu bir çekirdek hasıl eder. Bu yeni yapı, Azot-14’tür. Böylece kararsız Karbon-14, kararlı Azot-14’e dönüşür. Yarılanma ömrü de 5730 yıldır.

Atmosferde teşekkül eden Karbon-14, derhal CO2 halinde oksitlenir ve havaya, suya ve organizma bünyesine yayılır. Normal olarak, havadaki radyoaktif karbondioksit ile radyoaktif olmayan karbondioksit oranının, dolayısıyla C14/C12 oranının sabit olduğu, bu sabit orana ulaşabilmek için de 100 yılın geçtiği kabul edilir.

Canlı organizmalardaki C14/C12 oranının da sabit olması beklenir. Organizma yaşadığı sürece bu oranın eşitliği değişmez. Fakat canlı organizma ölünce, havadan CO2 alamayacağı için C14’ün C12’ye oranı gittikçe azalacaktır. Bu azalma ½ değerini bulduğu zaman, o organizmanın ölümünden itibaren geçen sürenin 5730 yıl olması gerekir. Çünkü C14’ün yarı ömrü 5730 yıldır. Beş yarı ömürde, yani yaklaşık 29 bin yılda orijinal radyokarbon miktarının sadece 1/32’si serbest bırakılacaktır. Radyokarbon Metodu, en çok 80 bin yıl öncesine kadar uzanan süreleri tespit ettiği için kullanılabilmektedir. Daha yaşlı materyaller, Uranyum Metodu’yla test edilmelidir.

Radyokarbon Metodu’nun Kritiği

Radyokarbon Metodu birtakım kabullere dayandığı için tenkit edilmelidir. İtiraz edilen hususlar şunlardır:

1- Birçok canlı sistem, standart C14/C12 oranına sahip değildir. Karbon-14 Metodu, bütün canlı organizmalar öldüğü zaman, onların hepsinin standart C14/C12 oranını ihtiva ettiğini farz eden bir kabulle yola çıkar. Halbuki birçok numune bu oranı göstermemişti. Mesela bu metotla, yaşayan mollusklar 2300 yaşında tespit edilmiştir. Böyle bir değer, organizma çevresinin, tahmin edilenden daha fazla C14 ihtiva ettiğini, dolayısıyla organizma ile çevre arasında karbon değişimi olduğunu gösterir.

2- Radyokarbon, her organizmada sabit oranda azalmayabilir. Radyokarbon bozunumları, çevrenin radyoaktivitesinden, özellikle serbest nötronlardan ve kozmik radyasyonlardan etkilenmekte ve dolayısıyla bozunma hızları değişmektedir.

3- Tabii karbon miktarı geçmişte değişik olabilir. Geçmişte yeryüzünün bitki örtüsü, şimdikinden ya daha fazlaydı ya da daha az. Buna bağlı olarak da C14/C12 oranı ya büyük veya küçük olacaktır. Dolayısıyla bu periyotlara ait materyallerin görünen radyokarbon yaşı da, gerçek yaştan ya büyük veya küçük bulunacaktır. Aynı husus, atmosferdeki karbondioksit miktarı için de geçerlidir. Şayet geçmişte volkanlar dışarıya karbondioksit vermişse, bu durumda o zamanki karbondioksit miktarı, şimdikinden farklı olacaktır.

4-
Radyokarbon oranı kararlı bir duruma erişmemiş olabilir. C14/C12 oranının belirli bir sürede yerkürede kararlı bir duruma geldiği kabul edilir. Yani atmosferde teşekkül eden C14 miktarı, yeryüzünde bozulmaya uğramış C14 miktarına eşittir. Dolayısıyla giren ve çıkan toplam C14 miktarı aynı olmalıdır. Ama durumun böyle olmadığını gösteren hususlar da vardır. Nitekim dünyada bir yılda teşekkül eden radyokarbonun ölçülebilen miktarının, bozulmaya uğrayan radyokarbondan yüzde 25 oranında fazla olduğu belirtilmektedir.

d.2- Radyoaktivitenin Dolaylı Etkilerine Dayanan Metotlar

Radyoaktivitenin dolaylı etkileri, radyoaktif parçalanmalara bağlı ışın yayımıyla meydana gelir. Bu ışınlar, kayacı bir bombardımana tutmuş gibi tesir hasıl eder. Işınların kaynağı, özellikle kayaç içinde bulunan tabii radyoaktif mineraller veya ağır elementlerin çevreden gelen alfa veya kozmik ışınlarıyla bunların fizyonu olabilir.

d.2.1- Paleokroik Çevreler Metodu

Paleokroik çevreler özellikle biyotidler içinde radyoaktif İnklüzyonların (zirkon, monozit) etrafında küresel olarak bulunur. Eğer İnklüzyon çok küçük ise paleokroik çevreler tam küre şeklindedir ve ince kesitte bir çemberi andırır. Konsantrik kürelerin çapları sabit değerlerde olup, her kürenin çapı, alfa ışınının aldığı yola eşittir. Paleokroik çevrenin ışık geçirgenliği ile onun etkisiyle aldığı alfa ışını arasındaki ilgi, deneyle tespit edildiğinden yaş tayininde kullanılabilir.

Bu metot birçok yönden eleştirilmektedir. Yapılan deneyler, suni olarak elde edilen paleokroik çevredeki ışık geçirgenliğinin periyodik olarak değiştiğini, özellikle ısı artışından fazla etkilendiğini göstermiştir.

d.2.2- İz Metodu

bu metot, herhangi bir mineralin radyoaktivite sebebiyle parçalanırken saçtığı ışın izlerinin sayımına dayanır.

d.2.3- Metamiktleşme Metodu

bu metot, bir mineraldeki kristal ağların X ışınlarıyla ölçülerek ortaya konulabilen düzensizliğini esas alır.

d.2.4- Termolominesans Metodu

Işınların etkisi altında kalan kristal iç yapısına bağlı bazı elektronlar kurtulur ve kristal ağının kusurlu yerlerinde hapsedilir. Bu durumda bulunan elektronların tamamı, normal yerlerindekine oranla daha yüksek enerji seviyeli dinamik bir sistem meydana getirir. Isı tesiriyle elektronların normal yerlerine dönmeleri ışık şeklinde enerji çıkmasıyla olur ve böylece radyoaktiviteyle etkilenmiş mineralin enerji seviyesi bulunabilir.

Radyoaktivitenin dolaylı etkisine dayanan bu metotlar halen geliştirilme safhasındadır ve daha öncekilere göre kullanım alanları dardır.


KAYNAKLAR


I.Bourdial, Une faille dans le carbone 14. Science & Vie. No: 1007 (2001) Août, Paris.
R.Milton, Shattering the Mythes of Darwinism (Park Street Press, Vermont 1997).